Skip to main content
ENHU
Főoldal

Main navigation

  • Rólunk
  • Aktualitások
    • Hírek
    • Események
  • Kutatás
    • Kutatási területek
    • Projektek
  • Anyagok
    • Publikációk
    • Letöltések
  • Partnerek
  1. Főoldal
  2. Publikációk
2021-06-01
Quantum 5, 464

Modeling and mitigation of cross-talk effects in readout noise with applications to the Quantum Approximate Optimization Algorithm

doi:10.22331/q-2021-06-01-464

Measurement noise is one of the main sources of errors in currently available quantum devices based on superconducting qubits. At the same time, the complexity of its characterization and mitigation often exhibits exponential scaling with the system size. In this work, we introduce a correlated measurement noise model that can be efficiently described and characterized, and which admits effective noise-mitigation on the level of marginal probability distributions. Noise mitigation can be performed up to some error for which we derive upper bounds. Characterization of the model is done efficiently using Diagonal Detector Overlapping Tomography – a generalization of the recently introduced Quantum Overlapping Tomography to the problem of reconstruction of readout noise with restricted locality. The procedure allows to characterize kk-local measurement cross-talk on NN-qubit device using O(k2^(k)log(N)) circuits containing random combinations of X and identity gates. We perform experiments on 15 (23) qubits using IBM's (Rigetti's) devices to test both the noise model and the error-mitigation scheme, and obtain an average reduction of errors by a factor >22 (>5.5) compared to no mitigation. Interestingly, we find that correlations in the measurement noise do not correspond to the physical layout of the device. Furthermore, we study numerically the effects of readout noise on the performance of the Quantum Approximate Optimization Algorithm (QAOA). We observe in simulations that for numerous objective Hamiltonians, including random MAX-2-SAT instances and the Sherrington-Kirkpatrick model, the noise-mitigation improves the quality of the optimization. Finally, we provide arguments why in the course of QAOA optimization the estimates of the local energy (or cost) terms often behave like uncorrelated variables, which greatly reduces sampling complexity of the energy estimation compared to the pessimistic error analysis. We also show that similar effects are expected for Haar-random quantum states and states generated by shallow-depth random circuits.

Szerzők
Filip B. Maciejewski
Flavio Baccari
Zimborás Zoltán
Michał Oszmaniec
Research fields

Kvantumszámítás és kvantumrendszerek szimulációja

Bővebben
Institutes
Bővebben
Főoldal

Explore

  • Állásajánlatok
  • Hírek
  • Események
  • Publikációk

Kutatási területek

  • Kvantumkommunikációs hálózat megvalósítása
  • A kvantuminformatika elemi építőkövei
  • Kvantumszámítás és kvantumrendszerek szimulációja

Contact us (Wigner RCP)

1121 Budapest,
Konkoly-Thege Miklós út 29-33.
Titkárság:
+36-1-392- 2512
Sajtókapcsolat:
+36-30-487-9869
@email

©2021 Kvantuminformatika Nemzeti Laboratórium