Skip to main content
ENHU
Home

Main navigation

  • About us
  • Discover
    • News
    • Events
  • Research
    • Research fields
    • Projects
  • Resources
    • Publications
    • Downloads
  • Partners
  1. Home
  2. Publications
2020-12-02
JCTC 17/1:79-95

Concept of orbital entanglement and correlation in quantum chemistry

doi:10.1021/acs.jctc.0c00559

A recent development in quantum chemistry has established the quantum mutual information between orbitals as a major descriptor of electronic structure. This has already facilitated remarkable improvements in numerical methods and may lead to a more comprehensive foundation for chemical bonding theory. Building on this promising development, our work provides a refined discussion of quantum information theoretical concepts by introducing the physical correlation and its separation into classical and quantum parts as distinctive quantifiers of electronic structure. In particular, we succeed in quantifying the entanglement. Intriguingly, our results for different molecules reveal that the total correlation between orbitals is mainly classical, raising questions about the general significance of entanglement in chemical bonding. Our work also shows that implementing the fundamental particle number superselection rule, so far not accounted for in quantum chemistry, removes a major part of correlation and entanglement seen previously. In that respect, realizing quantum information processing tasks with molecular systems might be more challenging than anticipated.

Authors
Lexin Ding
Sam Mardazad
Sreetama Das
Szalay Szilárd
Ulrich Schollwöck
Zoltán Zimborás
Christian Schilling
Research fields

Elementary building blocks of quantum information

Read more
Institutes
Read more
Home

Explore

  • Vacancy
  • News
  • Events
  • Publications

Research fields

  • Realization of a quantum communication network
  • Elementary building blocks of quantum information
  • Quantum computation and simulating quantum systems

Contact us (Wigner RCP)

1121 Budapest,
Konkoly-Thege Miklós út 29-33.
Secretary:
+36-1-392- 2512
Media contact:
+36-30-487-9869
@email

©2021 Quantum Information National Laboratory