Skip to main content
ENHU
Home

Main navigation

  • About us
  • Discover
    • News
    • Events
  • Research
    • Research fields
    • Projects
  • Resources
    • Publications
    • Downloads
  • Partners
  1. Home
  2. Publications
2021-05-06
Nature Materials (2021)

Single-spin resonance in a van der Waals embedded paramagnetic defect

doi:10.1038/s41563-021-00979-4

A plethora of single-photon emitters have been identified in the atomic layers of two-dimensional van der Waals materials. Here, we report on a set of isolated optical emitters embedded in hexagonal boron nitride that exhibit optically detected magnetic resonance. The defect spins show an isotropic ge-factor of ~2 and zero-field splitting below 10 MHz. The photokinetics of one type of defect is compatible with ground-state electron-spin paramagnetism. The narrow and inhomogeneously broadened magnetic resonance spectrum differs significantly from the known spectra of in-plane defects. We determined a hyperfine coupling of ~10 MHz. Its angular dependence indicates an unpaired, out-of-plane delocalized π-orbital electron, probably originating from substitutional impurity atoms. We extracted spin–lattice relaxation times T1 of 13–17 μs with estimated spin coherence times T2 of less than 1 μs. Our results provide further insight into the structure, composition and dynamics of single optically active spin defects in hexagonal boron nitride.

Authors
Nathan Chejanovsky
Amlan Mukherjee
Jianpei Geng
Yu-Chen Chen
Youngwook Kim
Andrej Denisenko
Amit Finkler
Takashi Taniguchi
Kenji Watanabe
Durga Bhaktavatsala Rao Dasari
Philipp Auburger
Ádám Gali
Jürgen H. Smet
Jörg Wrachtrup
Research fields

Elementary building blocks of quantum information

Read more
Institutes
Read more
Read more
Home

Explore

  • Vacancy
  • News
  • Events
  • Publications

Research fields

  • Realization of a quantum communication network
  • Elementary building blocks of quantum information
  • Quantum computation and simulating quantum systems

Contact us (Wigner RCP)

1121 Budapest,
Konkoly-Thege Miklós út 29-33.
Secretary:
+36-1-392- 2512
Media contact:
+36-30-487-9869
@email

©2021 Quantum Information National Laboratory